CAPSTONE PROJECT 3 - PART 1

1. A customer can make a payment either by card or by Wallet or by Cash or by Net
 Banking. Draw a use case diagram?

 The diagram represents a Payment Application where a user (customer) can log in and
 Make a payment.
 After logging in, the customer can choose one of the payment methods:
 Cash, Card, Wallet, Net banking.
 If the customer selects Net Banking, the system allows the user to:
 Select the bank.
 Enter the bank details.
 Enter the amount.
 Click on pay.
 After the payment is completed, the system sends a payment confirmation in the form:
 Email / SMS.
 Finally, the user can logout.
 The Bank Server is shown as an external actor because the application communicates
 With it during the Net banking transactions.

2. Derive Boundary Classes, Controller Classes, Entity Classes?

 BOUNDARY CLASSES:
 Boundary classes represent the interaction between the system and the external actors
 (customer, UI screens).
	BOUNDARY CLASS
	DESCRIPTION

	Payment screen/payment UI
	Screen where customer selects payment type (card/wallet/cash/net banking).

	Card payment form
	UI form to enter card number, CVV, expiration date.

	Wallet payment form
	UI to login in or access wallet balance.

	Net banking login screen
	UI screen redirecting to bank portal for authentication.

	Cash payment receipt screen
	UI showing instructions or confirmation for cash payment.

CONTROLLER CLASSES:
Controller classes manage the flow of data between boundary and entity classes.
	CONTROLLER CLASS
	DESCRIPTION

	Payment controller
	Main controller that receives payment selection and routes to the respective method.

	Card payment controller
	Handles card validation and processing.

	Wallet payment controller
	Checks wallet balance and handles wallet payment logic.

	Net banking controller
	Connects to external net banking gateway.

	Cash payment controller
	Records cash payment and generate receipt.

ENTITY CLASSES:
Entity classes represent core business data stored in the system.
	ENTITY CLASS
	ATTRIBUTES (EXAMPLE)
	DESCRIPTION

	Payment
	Payment ID, Payment Amount, Payment date, payment status, payment mode.
	Stores payment details.

	Customer
	Customer ID, name, email, mobile number.
	Customer information.

	Card
	Card no, card type, expiry date.
	Stores card details for processing.

	Wallet
	Wallet ID, wallet balance, provider name.
	Represents digital wallet data.

	Bank account
	Account no, IFSC, bank name.
	Used for net banking payment.

3. Place these classes on a three-tier architecture?
 Three- tier architecture contains:
 1. Presentation Layer (UI / Boundary Classes)
 2. Business Logic Layer (Controller Classes)
 3. Data layer (Entity Classes / Database)
 Placement of Classes:

	LAYER
	CLASSES
	WHY THEY ARE HERE

	Presentation Layer
(Boundary Classes)
	Payment screen, card payment form, wallet payment form, net banking screen, cash payment screen.
	These screens interact directly with the customer.

	Business Logic Layer
(Controller Classes)
	Payment controller, card payment controller, wallet payment controller, net banking controller, cash payment controller.
	These classes contain the payment logic and decide which payment method to trigger.

	Data Layer
(Entity Classes)
	Customer, payment, card, wallet, bank account.
	These classes store core data in the database.

4. Explain Domain Model for customer making payment through net banking?

 A domain model shows the important entities (objects) involved in the process and how
 They are related to each other.
 For Net Banking payment, the main entities are customer, Payment, Bank account, and
 Bank.
 Customer initiates a payment - payment is processed - bank account verifies - bank
 Confirms the transaction.
 Entities Involved:

	Entity
	Attributes (examples)

	Customer
	Customer id, name, email, mobile no.

	Payment
	Payment id, amount, payment mode, payment status, date.

	Bank Account
	Account no, account holder name, IFSC, login credentials.

	Bank
	Bank id, bank name, gateway URL.

Relationships:
A customer makes a payment.
A payment is processed using a bank account.
A bank account belongs to a bank.

5. Draw a Sequence Diagram for payment done by customer Net Banking?

6. Explain Conceptual Model for this case?

 A conceptual Model is a high-level representation of the system.
 It shows what objects (entities) exist in the system and how they are related,
 Without showing technical details.
 For this case - customer making payment through Net Banking.
 ENTITIES (What are the key objects?)
 Customer
 Payment
 Bank Account
 Bank
 ATTRIBUTES (important information stored about each entity)

	ENTITY
	ATTRIBUTES

	Customer
	Customer id, name, email, phone number

	Payment
	Payment id, amount, payment status, payment mode (net banking), date.

	Bank account
	Account no, account holder name, IFSC, login userid.

	bank
	Bank id, bank name.

RELATIONSHIPS BETWEEN ENTITIES:
A customer makes a payment.
A payment is done using a bank account.
A bank account belongs to a bank.

7. What is MVC architecture? Explain MVC rules to derive classes from use case
 Diagram and guidelines to place classes in 3-tier architecture?

 MVC ARCHITECTURE:
 MVC stands for Model - View - Controller an architectural pattern that divides an
 Application into three components.
	COMPONENTS
	MEANING
	RESPONSIBILITIES

	MODEL
	Represents data/ business logic.
	Manages application data, rules, validation, and interaction with database.

	VIEW
	Represents UI / screens
	Displays data to users and takes input (screens, forms, pages).

	CONTROLLER
	Acts as an intermediary
	Receives input from view, calls model, returns output to view.

WHY MVC IS USED?
Avoids mixing UI, logic, and database code.
Increases maintainability and scalability.
MVC RULES TO DERIVE CLASSES FROM USE CASE DIAGRAM.
	CLASS TYPE
	HOW TO IDENTIFY

	Boundary / view class
	Every interaction between actor - system becomes a view class (screen/form).

	Controller class
	Every use case becomes a controller class.

	Entity / model class
	Every business noun from use case (customer, payment, order, etc.,.) becomes a model / entity class.

EXAMPLE:
Actor = customer - view classes (payment screen, login screen)
Use Case = make payment - controller class (payment controller)
Data nouns = customer, payment, bank account - model/ entity classes
GUIDELINES TO PLACE MVC CLASSES INTO 3-TIER ARCHITECTURE
	3-TIER
	WHAT IT CONTAINS
	CORRESPONDING MVC

	Presentation tier
	UI screens, forms, pages
	View classes

	Business logic tier
	Processing, validations, workflows.
	Controller classes

	Data tier
	Database entities / tables.
	Model classes / entity classes

MVC separates an application into model (data), view (UI), and controller (logic). From the use case diagrams, UI interactions become view classes, each use case becomes a controller class, and business objects become model / entity classes. In 3-tier architecture: view goes to presentation layer, controller goes to business layer and model goes to data layer.
8. Explain BA contributions in project (waterfall model - all stages)?

	STAGE
	BA ACTIVITIES
	ARTIFACTS/ OUPUTS/ RESOURCES

	Pre-project / proposal
	Understand the business problem, identify stakeholders, conduct initial business case discussion.
	Business case, problem statement, initial scope document.

	Planning
	Define scope, identify risks, prepare requirement plan, estimate BA effort.
	Scope statement, BA plan, stakeholder register, RACI.

	Project initiation
	Conduct kickoff meeting, define communication plan, finalize requirement approach.
	Project charter, communication plan, stakeholder matrix.

	Gathering requirements
	Conduct interviews, workshops, JAD, sessions, collect functional and non-functional requirements.
	BRD notes, requirement elicitation document, MoM.

	Requirement analysis
	Analyze requirements, create models (use case, process flow, user stories), prioritize requirements.
	SRS / BRD, use case diagram, data flow diagram, domain model.

	Design support
	Validate UI/UX wireframes, ensure requirements are correctly interpreted by designers and architects.
	Wireframes, mockups, UI specifications.

	Development support
	Clarify doubts of developers, participate in requirement walkthrough, update change requests.
	Updated BRD / SRS, CR log, clarification tracker.

	Testing support
	Support QA team, review test cases, validate test coverage, assist in defect triage.
	RTM (requirement traceability matrix), test case review, defect log.

	UAT
	Support business users during testing, validate final product against requirements.
	UAT test scenarios, sign off doc, release note.

9. What is conflict management? Explain using Thomas-Kilmann technique?
image1.emf
Payment Application

User

Database

Bank server

login

username password

payment

cash

card

wallet

net banking

select net banking

select bank

add bank details

add amount to pay

click on pay

payment

confirmation

sms email

logout

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8 *

-End9 *

-End10

*

-End11

*

-End12

*

-End13

*

-End14

*

-End15

*

-End16

*

-End17

*

-End18

*

-End19

*

-End20

*

-End21

*

-End22

*

oleObject1.bin
System

Payment Application

User

Use Case

Database

Bank server

login

username

password

payment

cash

card

wallet

net banking

select net banking

select bank

add bank details

add amount to pay

click on pay

payment
confirmation

sms

email

logout

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8

*

-End9

*

-End10

*

-End11

*

-End12

*

-End13

*

-End14

*

-End15

*

-End16

*

-End17

*

-End18

*

-End19

*

-End20

*

-End21

*

-End22

*

