Nurturing Process - Capstone Project 3 – Part -1/2 V2D2- August 24
	Q.01
	[bookmark: _GoBack]Draw a Use Case Diagram

	A.01
	

	Q.2
	Derive Boundary Classes, Controller classes, Entity Classes.

	A.2
	Boundary class - used to handle interactions between the system and external actors

Ex PaymentOptionBoundary
 CardPaymentBoundary

Controller Class – act as a intemediates between boundary and entity classes

Ex PaymentInitiatedController
 CardPaymentController

Entity Class – represent core data and business logic of the application

Ex Customer
 Payment

	Q.3
	Place these classes on a three tier Architecture.

	A.3
	User Layer

PaymentMethodBoundary
CardPaymentBoundary

Business Logic

PaymentController
WalletController

Data Tier

Customer(Entity Class)
Payment(Entity Class)

	Q.4
	Explain Domain Model for Customer making payment through Net Banking

	A.4
	A domain model is a conceptual representation that defines the structure, relationship, and behaviour of entities within a specific problem domain.

	Q.5
	Draw a sequence diagram for payment done by Customer Net Banking

	A.5
	A sequence diagram is a type of interaction diagram used in software engineering and systems design to illustrate how processes operate with one another and in what order.

	Q.6
	Explain Conceptual Model for this Case

	A.6

	A conceptual model is a high level representation of a system that helps understanding, visualizing, and communicating the essential aspects of a domain.

It provides a clear and simplified view of the domain, making it easier to understand.

Key elements of a conceptual model

1. Entities – Customer, Product, Order and Payment
2. Attributes – Customer ID, Name email, phone number
3. Relationship – For example, a customer places an order

	Q.7
	What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture

	A.7
	MVC Architecture
MVC (Model-View-Controller) is an architectural pattern that separates an application into three distinct components:

Model:
Represents the data and business logic of the application. It manages data storage, retrieval, manipulation, and encapsulates the rules that govern how data is handled.

View:
Represents the user interface (UI) of the application. It is responsible for displaying data from the Model to the user and presenting the application's visual elements.

Controller:
Acts as an intermediary between the Model and the View. It receives user input from the View, processes it, updates the Model based on the input, and then selects the appropriate View to display the updated information.

Deriving Classes from Use Case Diagrams using MVC Rules

When deriving classes from use case diagrams for an MVC architecture, the following rules can be applied:

Boundary Classes (View):
For each actor interacting with a use case, or for each distinct interface required by a use case, one or more boundary classes (Views) can be identified. These classes represent the user interface elements that facilitate interaction.
Control Classes (Controller):
Each use case typically maps to a control class (Controller). This class orchestrates the execution of the use case, handling user input, interacting with the model, and selecting the appropriate view.

Entity Classes (Model):
Each entity or concept within the problem domain, often represented by nouns in the use case description, can be modeled as an entity class (Model). These classes encapsulate the data and business logic related to that entity.

Guidelines for Placing Classes in 3-Tier Architecture
The 3-tier architecture further organizes application components into distinct layers:

Presentation Tier:
Contains the user interface and is responsible for presenting information to the user and accepting user input.
Placement: View classes from the MVC pattern reside in this tier.

Application (or Logic) Tier:
Contains the business logic and application processing. It processes user requests, interacts with the data tier, and applies business rules.
Placement: Controller classes from the MVC pattern and business logic components (often part of the Model, specifically the business rules and operations) reside in this tier.

Data Tier:
Stores and manages the application data. This typically includes databases, file systems, or other data storage mechanisms.
Placement: Model classes, particularly the data access and persistence logic, reside in this tier. The actual data storage (e.g., database) is also part of this tier.
Key Principle: Each tier should only communicate with the adjacent tier. The Presentation Tier interacts with the Application Tier, which in turn interacts with the Data Tier. Direct communication between the Presentation Tier and the Data Tier is generally avoided to maintain separation of concerns.

	Q.8
	Explain BA contributions in project (Waterfall Model – all Stages)

	A.8
	In the Waterfall model, a Business Analyst (BA) contributes significantly to each stage, primarily by eliciting and documenting requirements in the initial phase, then acting as a key point of contact for questions during design and implementation, and finally helping to verify the product during testing and deployment. Their role is foundational, ensuring the project remains aligned with business goals through comprehensive documentation and continuous clarification.

Requirements

Elicit and Document: The BA is central to this phase, gathering requirements from stakeholders by analyzing business needs and documenting them in detail.
Create Business Case: They help create the business case, identify the project, and provide input for all requirement-related activities, determining which projects make sense for the organization.
Define Scope: The BA defines the project's scope and helps evaluate product requirements to choose a solution that best meets client goals.

Design
Clarify Requirements: BAs answer questions from the design team to ensure they have a clear understanding of the requirements.
Support Artifact Creation: They assist in the creation of design documents and UML diagrams.
Manage Changes: The BA manages changes to requirements, which is crucial even in a linear model, ensuring they are cost-effectively handled throughout the project.
Implementation (Coding)
Answer Questions: The BA provides support to developers by answering their questions about the requirements and the design documents.
Act as a Resource: Developers can turn to the BA to clarify any confusion and ensure they are building the product as intended.

Testing (Verification)
Assist Testers: The BA helps the testing team by ensuring they understand the requirements to build proper test cases.
Review Test Cases: They review test cases to verify that they cover the full functionality of the application.
Support Acceptance Testing: In many organizations, the BA is also responsible for acceptance testing, verifying that the final product meets the business needs and is ready for deployment.

Deployment and Maintenance
Verify Delivery: During deployment, the BA verifies that the product is delivered as per the requirements.
Handle Change Requests: In the maintenance phase, the BA is a key resource for understanding and documenting any change requests or patches that need to be implemented, as they have intimate knowledge of the project's history.

	Q.9
	What is conflict management? Explain using Thomas – Kilmann technique

	A.9
	Conflict management is the process of resolving disagreements to minimize negative outcomes while maximizing positive ones, and the Thomas–Kilmann technique uses five styles—competing, collaborating, compromising, avoiding, and accommodating—to navigate these conflicts. These styles are based on an individual's level of assertiveness (how much they focus on their own needs) and cooperativeness (how much they focus on the other party's needs). Understanding which style to use can help improve relationships and team performance.

The five conflict management styles

Competing: Using a high degree of assertiveness and low cooperativeness, this style is about pursuing your own concerns at the other person's expense, where one party wins and the other loses. It is useful when a quick, decisive action is necessary, especially if there is a power imbalance or a situation of urgency.

Accommodating: This involves a high degree of cooperativeness and low assertiveness, where one party gives in to the other's needs and wishes, essentially choosing to lose to preserve the relationship. It's useful when the issue is more important to the other person or when you want to build goodwill.

Avoiding: This style has both low assertiveness and low cooperativeness, where you passively withdraw from the conflict and don't engage. It can be useful for trivial issues or to cool down a heated situation before it can be properly addressed later.

Collaborating: This approach uses high assertiveness and high cooperativeness to work with the other person to find a solution that fully satisfies both parties' concerns. It is valuable when the quality and acceptance of the solution are critical, as it encourages creative problem-solving.

Compromising: This style uses moderate assertiveness and moderate cooperativeness, where both parties give up some of what they want to find a middle ground. It is a useful strategy when time is short or when a quick solution is needed, but may not lead to the most optimal outcome.

	Q.10
	List down the reasons for project failure

	A.10
	Project failure for a Business Analyst is often caused by unclear objectives, poor communication, and scope creep. Other significant reasons include a lack of stakeholder involvement, unrealistic expectations, and insufficient resources, such as time, budget, or personnel.

Communication and Stakeholder issues

Poor communication: Misunderstandings among team members, stakeholders, or management can lead to significant problems and is considered a top reason for failure.

Lack of stakeholder involvement: If key stakeholders are not engaged, their needs may not be met, and they may not support the final deliverable.

Poor stakeholder management: This includes defining stakeholders too narrowly, failing to communicate progress, and defensive reactions to feedback.

Lack of domain knowledge: A Business Analyst who doesn't fully understand the business can struggle to gather accurate requirements.

Scope and planning challenges

Unclear objectives: If the goals are not clearly defined and agreed upon, the team will not have a common direction or a way to measure success.

Scope creep: Uncontrolled changes or additions to the project's scope can lead to delays and budget overruns.

Poor planning and management: Inadequate upfront planning can cause a project to fail due to a lack of direction or resources.

Unrealistic expectations: Setting unrealistic deadlines or cost estimates from the start can doom a project to fail.

Resource and execution problems

Inadequate resources: A shortage of necessary resources like budget, personnel, or technology can stall a project.

Limited resources: Insufficient allocation of resources can prevent the project from moving forward as planned.

Inexperienced project management: A lack of experience in managing projects and teams can lead to poor execution.

Lack of ownership: When team members do not feel a sense of ownership over the project, their commitment may suffer.

External and other factors

Changing business needs: The business environment can change, making the project's original requirements obsolete by the time it is completed.

Lack of effective leadership: Without strong leadership, a project can become disorganized and lose direction.

Poor documentation and tracking: Failing to properly document progress and decisions makes it difficult to manage and track the project effectively.

Ineffective testing: Insufficient or skipped testing can lead to a deliverable that does not function as expected.

	Q.11
	List the Challenges faced in projects for BA

	A.11
	Challenges for Business Analysts (BAs) include managing stakeholder expectations, dealing with ambiguous or changing requirements, and combating scope creep. Other hurdles involve communication gaps, lack of domain knowledge, resistance to change, and balancing multiple projects, all of which can lead to project delays, budget overruns, and team conflicts.

Requirements and scope

Ambiguous or incomplete requirements: Requirements are often vague, leading to misunderstandings and incorrect solutions.

Scope creep: Uncontrolled changes or additional features added to a project after its initial scope has been defined can cause budget and deadline issues.

Changing requirements: Business needs can shift during a project, requiring BAs to adapt and re-evaluate.

Poor prioritization: Without clear prioritization, teams may focus on less critical features instead of what's most important.

Stakeholder and communication

Conflicting stakeholder needs: Different stakeholders often have conflicting priorities, expectations, and opinions, which BAs must navigate to find consensus.

Communication gaps: Miscommunication between the BA and stakeholders, or within the project team, can derail progress.

Uninvolved stakeholders: It can be challenging to get stakeholders to dedicate sufficient time to requirements gathering and validation, sometimes because they don't see it as their role.

Difficulty with sign-offs: Getting timely sign-offs on requirements can be difficult due to stakeholder unavailability or lack of agreement.

Project and team management
Resistance to change: Stakeholders or team members may resist adopting new processes or technologies proposed by the BA.

Unrealistic deadlines: BAs often face unrealistic timelines set by sales or clients, making it difficult to deliver quality work.
Balancing multiple projects: Many BAs juggle several projects simultaneously, which can lead to burnout and decreased productivity.

Lack of domain knowledge: BAs may struggle when they lack the necessary industry or business domain knowledge for a new project.

Unclear role and expectations: The BA's role is sometimes misunderstood, leading to BAs being assigned tasks outside their scope or being seen as solely requirement-capturers.

	Q.12

	Write about Document Naming Standards

	A.12
	Document Naming Standards for Business Analysts (BAs) are crucial for efficient information retrieval, collaboration, and version control. A consistent, well-defined convention ensures all stakeholders can easily identify, sort, and locate project documents without needing to open them.

Key Principles of Document Naming Standards

Effective document naming standards should adhere to several core principles:

Be Meaningful and Concise: File names should be short but descriptive, providing a clear indication of the content's purpose. Avoid using generic names like "draft" or "letter" at the beginning of the file name.

Use Consistent Elements: Define a standard sequence of components, such as project name/acronym, date, subject description, and version number. The order should prioritize the most important information for retrieval.

Avoid Special Characters and Spaces: Stick to alphanumeric characters (A-Z, 0-9). Use hyphens (-), underscores (_), or CamelCase to separate elements and enhance readability across different systems.

Implement a Standard Date Format: Use the international standard date format of YYYY-MM-DD (e.g., 2025-11-13) to ensure files sort chronologically, regardless of the operating system's regional settings.

Use Leading Zeros for Numbers: For sequential numbering (e.g., version numbers, report numbers), use two or more digits (e.g., v01, v02, v10, not v1, v2, v10) to maintain correct numerical sorting.

A Practical Example of a BA Naming Convention

A practical naming convention for a Business Analyst might follow this structure:
[ProjectAcronym]_[DocType]_[Subject]_[YYYY-MM-DD]_[VersionStatus].[ext]
	Element
	Description
	Example

	ProjectAcronym
	Unique identifier for the project.
	BAKER

	DocType
	Type of document (e.g., BRD, SRS, UAT, Mins).
	BRD

	Subject
	Short, meaningful description of the content.
	ModuleA_Reqs

	YYYY-MM-DD
	Date of the latest revision.
	2025-11-13

	VersionStatus
	Version number and status (e.g., v01-DRAFT, v02-FINAL).
	v01-DRAFT

	Ext
	Standard file extension (.docx, .pdf, etc.).
	.docx

Putting it together, the full file name would be:
BAKER_BRD_ModuleA_Reqs_2025-11-13_v01-DRAFT.docx
Documenting and Enforcing Standards
The naming convention should be formally documented and shared with all team members and collaborators. This documentation (sometimes a simple readme.txt file in the main directory) should explain the chosen format, list any standard abbreviations, and provide examples. Consistency in application is key to the system's success.

	Q.13
	What are the Do’s and Don’ts of a Business analyst

	A.13
	
	Sr.
No
	DO’S
	DON’T’S

	01
	Consult an SME for clarifications in requirements
	Never say no to client.

	02
	Go to the client with a plain mind with no assumptions, listen carefully, and completely until the client is done, and then you can ask queries.
	There is no word as “By default”.

	03
	Try to extract maximum leads to the solution from the client himself.
	Never imagine anything in terms of GUI.

	04
	Concentrate on the important requirements.
	Don’t interrupt the client when he is giving you the problem.

	05
	Question the existence of existence./ Question everything.
	Never try to give solutions to the client straight away with your previous experience and assumptions.

	Q.14
	Write the difference between packages and sub-systems

	A.14
	n a business and systems analysis context, a package is a general-purpose organizational construct used to group related elements (like classes, use cases, or even other packages) for logical organization, while a subsystem is a more specific, self-contained, and architecturally significant unit that represents a major behavioral part of the system.
Key Differences Between Packages and Subsystems
	Aspect
	Package
	Subsystem

	Primary Use
	A general grouping mechanism for model elements during both analysis and design phases.
	A mechanism for partitioning a large system into smaller, manageable, self-contained units during the design phase.

	Scope
	Typically smaller and focused on a specific, narrow functionality or logical grouping of elements (e.g., a "Reporting package").
	Larger in scope, encompassing multiple packages/modules and representing a significant, integrated business function (e.g., an "Inventory Management System").

	Behavior/Functionality
	Simply a container; it does not inherently have behavior itself, though its contents do.
	A "system within a system" that provides specific services to the larger system and has a defined set of interfaces and behaviors.

	Reusability
	Components within a package might not be inherently reusable outside the specific system context.
	Designed to be highly cohesive internally and loosely coupled externally, making them ideal for independent development and potential reuse in other systems.

	UML Notation
	Represented as a folder icon in UML diagrams.
	Represented by the same folder icon but typically includes the <<subsystem>> keyword or a small fork icon in the corner.

	Development
	Often used in application development where components are tightly integrated.
	Often used in product development companies where modules are built to work independently and interact via defined interfaces.

In essence, a business analyst might use a package to organize initial requirements and use cases, while a systems analyst or architect would use a subsystem to define a concrete, implementable, and independently designable part of the final solution.

	Q.15
	What is camel-casing and explain where it will be used

	A.15

	Camel casing (or camelCase) is a naming convention in which the first letter of the first word in a compound phrase is lowercase, and the first letter of every subsequent word is uppercase [2]. The words are concatenated without spaces or punctuation.

Explanation and Usage
Explanation:
The name "camelCase" comes from the capital letters appearing like the humps of a two-humped camel [2]. There are two common variations:
Lower camel case (or dromedary case): The initial letter of the first word is in lowercase (e.g., firstName, camelCaseExample). This is the most common form in programming [2].
Upper camel case (or Pascal case): The initial letter of all words, including the first, is in uppercase (e.g., FirstName, PascalCaseExample) [2].

Usage:
In the context of a business analyst, camel casing is primarily encountered when working with software development teams, databases, and system design, ensuring consistency and readability in technical specifications [1].

Common uses across different fields include:

Programming: It is widely used in numerous programming languages for naming variables, functions, and methods. Examples include JavaScript, Java, and Python (often for function and variable names) [2, 1].

Databases: When defining schema elements, camel casing is often used for column names or table names in certain database systems [1].

APIs and Web Services: In the development of application programming interfaces (APIs), camel casing is a common convention for field names in JSON or XML data payloads to ensure consistent data exchange [1].

Business Specifications: While not used in formal documents (which prefer standard English), a business analyst might use it in technical requirements documents (TRDs) or user stories to consistently refer to specific field names within a system, bridging the gap between business needs and technical implementation [1].

	Q.16
	Illustrate Development server and what are the accesses does business analyst has?

	A.16
	A development server is a computer system used by software developers to build, test, and debug applications before they are deployed to a production environment. Its primary purpose is to provide a controlled sandbox where changes can be made and tested without affecting the live system or end-users.

Key characteristics of a development server include:
Isolation: It is separate from the production (live) server and the staging/testing servers.
Flexibility: It is configured to allow developers administrative control to install necessary tools, change configurations, and simulate various scenarios.
Instability: It often contains the newest code and is subject to frequent changes, meaning it may not always be stable or reliable.

Access for a Business Analyst
A business analyst (BA) typically has access to the development server, but their level of access is usually limited and role-based, focusing on analysis and testing rather than core coding or administrative functions. The specific access levels can vary between organizations, but generally include:

View Access to Data: BAs need to query databases (e.g., using SQL) to understand existing data structures, analyze current system behavior, and validate the accuracy of test data.

Application Interface Access: They can interact with the application's front-end on the development server to perform functional testing, verify that implemented features meet the defined requirements, and ensure the user experience aligns with specifications.

Access to Documentation Tools: BAs use tools like Confluence or Jira, which are often integrated with the development environment, to document requirements, track issues, and collaborate with the development team.

Limited Configuration Access: In some cases, a BA might be granted limited permissions to adjust non-critical application settings or parameters on the development server to test different scenarios or system behaviors, though they would not have full administrative control.

Read-Only File Access: BAs might have read-only access to certain configuration files or logs to help in troubleshooting or understanding system behavior, but they generally cannot modify the underlying source code or system files.

In essence, a BA's access is designed to facilitate their role in defining requirements, testing outcomes, and ensuring the final product aligns with business needs, without the permissions to disrupt the server's operation through coding or core administration.

	Q.17
	What is Data Mapping

	A.17
	Data mapping is the process of connecting data fields from one source to a corresponding data field in another, creating a structured "map" that defines how data will be transformed and transferred between systems. It is a crucial step for data integration, migration, and other management tasks, ensuring data consistency and accuracy across different platforms.

How it works
Connecting fields: Data mapping creates a link between a data field in a source system and a field in a destination system. For example, a "client_name" field in an old CRM could be mapped to a "customer_name" field in a new one.

Transforming data: It also defines how data should be transformed during transfer. This can involve changing formats, standardizing values, or combining fields to meet the requirements of the destination system.

Ensuring accuracy: By establishing clear rules for these connections and transformations, data mapping reduces errors, avoids redundancy, and ensures that data is accurate and consistent across different databases and applications.

Creating a map: The result is a clear, often visual, representation of the data flow, which can be reused for future integrations.

Common use cases
Data integration: Combining data from different sources to create a unified view.
Data migration: Moving data from one system to another, such as migrating from a legacy database to a new one.
ETL (Extract, Transform, Load): The process of extracting data, transforming it according to rules, and loading it into a destination system, like a data warehouse.
GDPR compliance: Documenting how personal data is collected, stored, and processed across various systems to meet legal requirements

	Q.18
	What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is Amm-dd-yyyy

	A.18
	An Application Programming Interface (API) is a set of rules and protocols that allows different software applications to communicate and exchange data with each other. It defines the methods, data formats, and conventions that applications must follow to interact.

API Integration in an Application with Date Format Conversion:
In an application that needs to integrate with another application using a different date format, API integration would be used to facilitate the exchange of data and ensure proper date interpretation.

Data Reception:
When your application receives data from the other US application, the date fields will be in mm-dd-yyyy format.

Parsing the Incoming Date:
Before processing or storing the received date, your application must parse the incoming string into a date object using the mm-dd-yyyy format. This converts the string representation into a structured date object that can be manipulated.

Python
 from datetime import datetime

 us_date_string = "11-13-2025" # Example date from US application
 parsed_date = datetime.strptime(us_date_string, "%m-%d-%Y")

Formatting for Internal Use/Storage: Once parsed, the date object can be formatted into your application's preferred dd-mm-yyyy format for internal use, display, or storage in a database.

Python
 formatted_date_for_internal_use = parsed_date.strftime("%d-%m-%Y")
 # This formatted_date_for_internal_use can then be stored or displayed

Data Transmission (if applicable): If your application also sends data back to the US application, you would perform the reverse conversion: format your internal dd-mm-yyyy date into mm-dd-yyyy before sending it.

Python
 # Assuming internal_date_object is a datetime object
 us_format_for_sending = internal_date_object.strftime("%m-%d-%Y")

This process ensures that despite the different date formats, both applications can accurately exchange and interpret date information through the API.

Page 1 of 15

oleObject1.bin
System

Payment System

Payment Initiation

Use Case

Customer

Payment Options

Via Card

Via Net Banking

Via UPI/Wallet

Via Debit
Card/Credit Card

Server

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8

*

image2.emf
Customer

PK Customer_ID

Customer Name

Contact Details

Address

Account Details

Bank

Bank Name

Location

Branch Code

Payment

Payment Id

Amount

Payment Date

Status

Account

Account No.

Account Type

Account Holder Name

Balance

Net Banking Service

Authentication

Fund transfer

Transaction History

Account Management

Authentication

Username

Password

OTP

Transaction

Transaction ID

Receipient Details

Amount

TimeStamp

oleObject2.bin
text�

�

Table

image3.emf
Customer

Net Banking System Bank

Authenticate Customer Details

Validate Payment Details

Deduction of Amount

Process Payment to Receipients Bank

Payment Confirmation

Initiate Payment Request

Receives Payment Confirmation

oleObject3.bin
Customer

Sequence

Net Banking System

Bank

Authenticate Customer Details

Validate Payment Details

Deduction of Amount

Process Payment to Receipients Bank

Payment Confirmation

Initiate Payment Request

Receives Payment Confirmation

image1.emf
Payment System

Payment Initiation

Customer

Payment Options

Via Card

Via Net Banking

Via UPI/Wallet

Via Debit

Card/Credit Card

Server

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8

*

