Capstone Project 3 part 1

Question 1- Use Case Diagram
Answer -
[image: use case diagram]

Question 2 - . Derive Boundary Classes, Controller classes, Entity Classes
Answer - 1. Boundary Classes
These interact with the actors (usually the UI components or system interfaces).
	Class Name
	Responsibility

	PaymentUI
	Interface to initiate and confirm payment.

	CardPaymentUI
	Captures card details (number, CVV, expiry).

	WalletPaymentUI
	Captures wallet provider and credentials.

	CashPaymentUI
	Accepts or confirms cash payment.

	NetBankingUI
	Takes bank details and login.

2. Controller Classes
These coordinate between UI (boundary) and data (entity) – handle logic and workflow.
	Class Name
	Responsibility

	PaymentController
	Main class to handle payment logic and route to methods.

	CardPaymentController
	Validate and process card payments.

	WalletPaymentController
	Handle wallet payment logic.

	CashPaymentController
	Confirm cash received and generate receipt.

	NetBankingController
	Interface with bank API and confirm transaction.

3. Entity Classes
These represent business/domain objects that hold data.
	Class Name
	Responsibility

	Customer
	Holds customer data (ID, name, contact, etc.)

	Payment
	Base class with common attributes (amount, status, date).

	Card
	Stores card info securely.

	Wallet
	Holds wallet account info and balance.

	BankAccount
	Stores net banking info (account number, IFSC).

Question 3 - Place these classes on a three tier Architecture
Answer -
	Tier
	Classes Placed
	Responsibility

	1. Presentation Layer
	PaymentUI, CardPaymentUI, WalletPaymentUI, CashPaymentUI, NetBankingUI
	Interact with customer/user, collect input data for processing

	2. Business Logic Layer
	PaymentController, CardPaymentController, WalletPaymentController, CashPaymentController, NetBankingController
	Handle payment logic, route the request to the correct payment processor

	3. Data/Entity Layer
	Customer, Payment, Card, Wallet, BankAccount
	Store business-related data, represent domain objects

Question 4 - Domain Model for Customer making payment through Net Banking
Answer - A Domain Model is a visual representation of real-world business entities and the relationships between them. It shows classes, attributes, and associations relevant to the problem domain—here, Customer making payment via Net Banking.
	
Key Domain Objects Involved in Net Banking Payment -
	Class
	Attributes (example)
	Responsibility

	Customer
	customerId, name, email
	Represents the user making the payment

	Payment
	paymentId, amount, date, status
	Abstract class representing a payment

	NetBankingPayment
	transactionId, bankName, accountNumber, IFSC
	Specialized payment method via bank

	BankAccount
	accountNumber, IFSC, balance
	Holds customer’s bank details

	Transaction
	transactionId, amount, timestamp, status
	Records the transaction done

Question 5 - sequence diagram
[bookmark: _GoBack]Answer -
[image: sequence diagram]

Question 6 - Conceptual Model for this Case
Answer - A Conceptual Model is a high-level representation of key concepts (classes/entities) in the problem domain and their relationships, without technical details like methods, data types, or implementation logic.

Conceptual Model for Customer Payment System (All Modes) -
	Class
	Description

	Customer
	A user who makes a payment

	Payment
	Abstract concept of a financial transaction

	PaymentMethod
	A general method of payment (Card, Wallet, Cash, NetBanking)

	Card
	Stores card-specific details (e.g., card number, CVV)

	Wallet
	Stores wallet provider info

	Cash
	Represents a physical cash payment

	NetBanking
	Includes bank account and IFSC info

	Transaction
	Represents the outcome of a payment (amount, time, status)

Question 7 - What is MVC architecture ?
Answer - MVC stands for Model–View–Controller, a software design pattern commonly used to develop user interfaces and structure object-oriented applications.

MVC Rules to Derive Classes from Use Case Diagram
	Use Case Element
	Derives
	Explanation

	Actors
	→ Boundary Classes (Views)
	They interact with the system; hence define input/output interfaces

	Use Cases
	→ Controller Classes
	Logic behind a use case is implemented by controller classes

	Domain Concepts
	→ Entity (Model) Classes
	Nouns and business objects become data classes

Guidelines to Place Classes in 3-Tier Architecture
	Tier
	MVC Component
	Class Types

	Presentation Tier
	View (Boundary)
	UI classes (e.g., PaymentUI, LoginForm)

	Business Logic Tier
	Controller
	Control logic (e.g., PaymentController)

	Data/Entity Tier
	Model
	Domain entities (e.g., Customer, Payment)

Question 8 - BA contributions in project (Waterfall Model – all Stages)
Answer - The Waterfall Model is a linear, sequential software development methodology that consists of distinct phases. Each phase must be completed before moving on to the next.

	Phase
	BA Contributions

	1. Requirement Gathering & Analysis
	 Identify stakeholders and conduct requirement elicitation techniques (interviews, surveys, workshops) 🔹 Gather and document Business Requirements Document (BRD), Functional Requirements (FRD), and Non-functional requirements (NFR) 🔹 Validate and get sign-off from stakeholders

	2. System Design
	 Help translate business requirements into technical specifications 🔹 Participate in review of architecture, data flow diagrams (DFDs), and wireframes 🔹 Ensure business logic is accurately captured in the design

	3. Implementation (Development)
	Act as a bridge between developers and stakeholders 🔹 Clarify requirements, answer queries, and manage requirement traceability 🔹 Review development progress against requirements

	4. Testing
	 Create/review test cases, test scenarios, and ensure coverage of business rules Coordinate User Acceptance Testing (UAT) 🔹 Identify and log defects or mismatches between requirements and implementation

	5. Deployment
	 Ensure all business requirements are delivered and validated 🔹 Help in training users and creating user manuals or SOPs 🔹 Validate production readiness

	6. Maintenance
	 Track and analyze change requests or enhancement needs 🔹 Help in impact analysis of new changes 🔹 Maintain documentation for future reference and audits

Question 9 - conflict management? Explain using Thomas – Kilmann technique

Answer - Conflict management refers to the process of identifying, addressing, and resolving disagreements or disputes between individuals or teams in a constructive manner.

The Thomas–Kilmann Conflict Mode Instrument (TKI) is a well-known model used to analyze how people handle conflict. It is based on two dimensions:
	1.	Assertiveness – the extent to which a person tries to satisfy their own concerns
	2.	Cooperativeness – the extent to which a person tries to satisfy others’ concerns
The 5 Conflict Management Styles in Thomas–Kilmann Model
	Style
	Description
	When to Use

	1. Competing (High Assertiveness, Low Cooperation)
	Forcing one's own viewpoint or decision on others
	Useful in emergencies or high-stakes decisions

	2. Collaborating (High Assertiveness, High Cooperation)
	Working together to find a win–win solution
	Best when time allows and relationships matter

	3. Compromising (Moderate Assertiveness and Cooperation)
	Each party gives up something to reach a middle ground
	Effective for temporary or quick resolutions

	4. Avoiding (Low Assertiveness and Cooperation)
	Ignoring or delaying conflict
	Suitable when the issue is minor or emotions are high

	5. Accommodating (Low Assertiveness, High Cooperation)
	Yielding to others’ viewpoints
	Appropriate to preserve harmony or when the issue is more important to the other party

Question 10 - Reasons for project failure
Answer -
	Reason
	Explanation

	 Unclear Requirements
	Poorly defined or changing requirements lead to misaligned outcomes.

	 Lack of Stakeholder Engagement
	If key stakeholders are not involved, the solution may not meet business needs.

	 Poor Planning
	Inadequate scope, time, or cost planning leads to delays or overspending.

	 Inadequate Risk Management
	Ignoring risks or not planning for them can cause sudden project disruptions.

	 Communication Gaps
	Miscommunication between teams, clients, and vendors leads to confusion and errors.

	 Weak Leadership or Governance
	Lack of direction from project managers or sponsors reduces accountability.

	 Unrealistic Deadlines
	Over-ambitious timelines without capacity analysis often lead to project burnout.

	 Insufficient Resources
	Lack of skilled personnel, tools, or budget can halt progress.

	 Poor Change Management
	Inability to adapt to changes in scope, technology, or market needs causes failure.

	 Lack of Testing or Quality Control
	Inadequate testing can lead to defective or non-functional deliverables.

Question 11 - Challenges faced in projects for BA
Answer -
	Challenge
	Explanation

	 Unclear or Evolving Requirements
	Stakeholders often struggle to articulate what they need, or they change their minds mid-project, leading to rework.

	 Lack of Stakeholder Involvement
	When business users or decision-makers are not available or engaged, the BA cannot validate or finalize requirements.

	 Communication Gaps
	Miscommunication between business and technical teams can lead to misunderstandings and incorrect implementations.

	 Scope Creep
	Continuous addition of new features without proper impact analysis or approvals leads to delays and cost overruns.

	Time Constraints
	BAs often have limited time to gather and analyze complex requirements thoroughly.

	Conflicting Stakeholder Interests
	Different stakeholders may have opposing needs, making it difficult to prioritize and finalize requirements.

Question 12 - Document Naming Standards
Answer - Document Naming Standards are predefined rules and guidelines used to name project documents in a consistent, clear, and organized manner.
Key Elements in Naming Standards
	Element
	Description

	Project Code/Name
	Short code for the project (e.g., AGRI, HRM, CRM)

	Document Type
	Indicates the document purpose (e.g., BRD, SRS, UAT, MOM)

	Module/Feature
	Specifies the module covered (e.g., Payment, Login)

	Version
	Indicates document version (e.g., V1.0, V2.3)

	Date (optional)
	Helps track document timeline (format: YYYYMMDD)

Question 13 - Do’s and Don’ts of a Business analyst
Answer - Do’s of a Business Analyst
	Do
	Explanation

	 Actively Listen to Stakeholders
	Understand their pain points, goals, and expectations clearly.

	 Document Clear and Complete Requirements
	Ensure all business, functional, and non-functional needs are captured accurately.

	 Facilitate Effective Communication
	Maintain continuous and transparent communication between business and technical teams.

	Verify and Validate Requirements
	Conduct reviews and walkthroughs to ensure correctness.

	 Maintain Traceability
	Keep track of requirements from initiation to implementation.

Don’ts of a Business Analyst
	Don’t
	Explanation

	Make Assumptions
	Always clarify requirements instead of guessing.

	Ignore Stakeholder Conflicts
	Address and resolve conflicting interests promptly.

	 Overcomplicate Requirements
	Avoid using technical jargon or unnecessary complexity.

	 Delay Feedback or Approvals
	Timely reviews are critical to avoid rework.

	 Lose Focus on Business Goals
	Stay aligned with business value and objectives.

Question 14 - Difference between packages and sub-systems
Answer -
	Aspect
	Package
	Sub-System

	Definition
	A logical grouping of related classes, interfaces, and diagrams
	A self-contained component that represents a system or part of a system

	Purpose
	Organize and manage complexity in models
	Represent a deployable or functional unit with defined interfaces

	Scope
	Used mainly for modeling organization
	Used for system architecture and design

	Content
	May contain classes, diagrams, and other packages
	Contains multiple packages and offers specific services

	UML Representation
	Shown as a folder icon in diagrams
	Shown as a package with stereotype <>

	Example
	PaymentModule, UserManagementPackage
	BillingSystem, InventorySubsystem

Question 15 - Camel-casing
Answer - Camel-casing is a naming convention in programming and documentation where:
Words are joined together without spaces.
The first word starts in lowercase, and each subsequent word starts with a capital letter.
Where Is Camel-Casing Used
	Usage Area
	Purpose

	Programming Languages (Java, C#, JavaScript)
	To define variables, methods, and object names

	Database Schema Naming
	Table or column names (in modern systems) like orderDate

	API Naming Conventions
	REST API parameters: getCustomerData(), updateProductList()

	Scripting & Automation
	Used in tools like PowerShell, Bash scripts, etc.

	Documentation Standards
	Ensures consistent readability and professionalism

Question 16 - Illustrate Development server and what are the accesses does business analyst has?
Answer - A Development Server is a server environment used by the development team to build, test, and integrate code before deployment to production.
accesses does business analyst has
	Access
	Description

	 Read-Only Access to Application
	To verify feature implementation against requirements

	 Access to Test Data/Input
	To create, update, and verify business scenarios using sample/test data

	 Access to Logs/Error Reports
	To analyze issues and provide detailed feedback to developers

	 User Interface Validation
	Check if UI matches wireframes, labels, and field validation rules

	 Postman/API Tool (Optional)
	For BAs involved in API testing or validation

	 No Access to Source Code
	BA typically doesn't edit code but may access build versions

Question 17 - Data Mapping
Answer - Data Mapping is the process of matching fields from one data source to another, ensuring that data is accurately transferred, transformed, or integrated between systems.
 It acts as a blueprint for:
Data migration
System integration
ETL (Extract, Transform, Load) processes
API connections and report generation
Purpose of Data Mapping
The goal is to ensure:
Data consistency
Correct data format
Accurate data flow across systems (e.g., from frontend to backend or from legacy system to new system)
Best Practices in Data Mapping
· Ensure data types and formats match
· Define transformation rules clearly
· Include default values and error handling
· Maintain a data mapping document for traceability and testing
Question 18 - What is API
Answer - API stands for Application Programming Interface. It is a set of rules and protocols that allows different software systems to communicate with each other.
Types of APIs:
	•REST API (most common – uses HTTP)
•SOAP API
	•GraphQL API
What is API Integration?
API Integration is the process of connecting your application with another system via API to send, receive, or process data automatically.
Use Case Scenario: Date Format Issue
Context: •Your Application Date Format: dd-mm-yyyy (Indian Standard)
	•External US Application Format: mm-dd-yyyy
Steps to Handle API Integration with Date Format Conversion
	Step
	Description

	 API Contract Definition
	Clearly define in the API documentation the expected date format on both sides

	 Use Data Mapping / Transformation Layer
	When receiving data, use a middleware (e.g., API Gateway, code logic, or integration tool) to convert mm-dd-yyyy into dd-mm-yyyy before saving or displaying

	 Implement Date Format Conversion
	Use programming logic (e.g., in JavaScript, Python, or Java) to parse and reformat dates

image1.png
System

Make Payment

image2.png
Customer | | Web Banking Portal | | Bank

1
i
1
Initiate Payment Request |

1
I Authenticate Customer
| Details
i

| Validate Payment Details
T
Authentication Success

1
Payment Validation|
Success: Process Payment

Payment Confirmation

Bank

T
i
I
i
1
1
1
1
i
I

Customer

