Customer Payment System
Question 1 – Draw a Use Case Diagram
Answer – 


Question 2 – Derive Boundary Classes, Controller classes, Entity Classes.
Answer: 
Boundary Classes
Boundary classes handle the interaction between external actors and the system. They represent UI screens, forms, or interfaces through which users input data or receive output.
Examples:
· PaymentOptionBoundary – interface where the user selects a payment method
· CardPaymentBoundary – screen where card details are entered
· NetBankingBoundary – screen for selecting bank and entering credentials
· LoginBoundary – login UI
Controller Classes
Controller classes act as intermediaries between Boundary and Entity classes. They contain the application logic, coordinate the workflow, and manage the sequence of operations in a use case.
Examples:
· PaymentInitiatedController – manages the overall payment flow
· CardPaymentController – validates card details and processes card payment
· NetBankingController – handles bank selection, authentication, and transaction initiation
· LoginController – manages login steps
Entity Classes
Entity classes represent the core business objects and contain persistent data, attributes, and business rules. These classes are long-lived and stored in the database.
Examples:
· Customer – holds customer details
· Payment – represents the payment being processed
· Transaction – logs transaction details like amount, status, timestamp
· BankAccount – stores bank account details for NetBanking
· CardDetails – stores card information for card payments
Question 3 – Place these classes on a three tier Architecture.
Answer: 
1. User Layer (Presentation Layer): Contains all Boundary/UI classes that interact directly with the user.

Classes:
· PaymentMethodBoundary
(Screen/interface where user selects payment method)
· CardPaymentBoundary
(Screen/interface where user enters card details)

2. Business Logic Layer (Application Layer): Contains Controller classes that coordinate the flow between UI and Data.

Classes:
· PaymentController
(Handles overall payment process, validation, and communication with data layer)
· WalletController
(Manages wallet balance operations & wallet-specific payment processing)

3. Data Layer (Database Layer): Contains Entity classes that store core business data.

Classes:
· Customer (Entity Class)
(Stores customer details — ID, name, contact, wallet balance, etc.)
· Payment (Entity Class)
(Stores payment details — amount, method, date, status, transaction ID)
In this three-tier architecture, the presentation layer manages the user interface and user interactions, the business logic layer handles core business rules and coordinates communication between layers, and the data layer is responsible for data storage, retrieval, and management.
Question 4 – Explain Domain Model for Customer making payment through Net Banking.
Answer:
A domain model is a high-level conceptual representation that defines the key entities, their attributes, and the relationships between them within a specific problem domain. It helps illustrate how the business concepts interact without involving technical or database details.




Question 5 – Draw a sequence diagram for payment done by Customer Net Banking.
Answer: 
A Sequence Diagram is a type of UML interaction diagram that shows how objects or system components communicate with each other by exchanging messages in a specific time ordered sequence to complete a process or use case.


Question 6 – Explain Conceptual Model for this Case.
Answer: 
A conceptual model is a high-level, technology-independent representation of the main concepts (entities) involved in the system and how they relate to each other. It helps in understanding, visualizing, and communicating the important elements of the domain without going into technical or implementation details.
It provides a simplified view of:
· What entities exist in the system
· What information they hold (attributes)
· How they are related
Key Elements of the Conceptual Model
Entities
· Customer
· Bank
· Net Banking Service
· Payment / Transaction
· Authentication
Attributes 
· Customer – CustomerID, Name, Email, PhoneNumber
· Bank – BankID, BankName, Location
· Net Banking Service – NetBankingID, ServiceType
· Payment/Transaction – TransactionID, Amount, PaymentMethod, Status
· Authentication – AuthID, Username, Password, OTP
Relationships
· These represent how the entities interact:
· A Customer uses Net Banking Service
· A Customer initiates a Payment / Transaction
· A Payment is processed through the Customer’s Bank
· Authentication verifies the Customer before the Transaction
· A Bank provides Net Banking Services
Question 7 – What is MVC architecture? Explain MVC rules to derive classes from use case diagram and guidelines to place classes in 3-tier architecture.
Answer:
MVC (Model–View–Controller) is an architectural pattern that separates an application into three components to improve maintainability and scalability.
Model
· Represents the application's data and business rules.
· It defines domain entities and handles core business logic.
View
· Represents the user interface.
· It displays data from the Model and collects inputs from the user.
Controller
· Acts as the mediator between View and Model.
· It receives user input from the View, processes it, updates the Model, and selects the appropriate View to display results.
Deriving Classes Using MVC Rules
Boundary (View) Classes
· Identified for each actor–use case interaction or distinct user interface.
· Represent screens or input/output interfaces.
Controller Classes
· Typically, one controller per use case.
· Manage the workflow, validation, and communication between View and Model.
Entity (Model) Classes
· Derived from nouns in the use case description.
· Represent domain concepts that require data storage or business rules.
Placing Classes in 3-Tier Architecture
Presentation Tier
· Contains UI elements.
· MVC Placement: Boundary / View classes.
Application / Logic Tier
· Contains business logic, workflows, and rules.
· MVC Placement: Controller classes and Model logic (business operations).
Data Tier
· Handles data storage, persistence, and retrieval.
· MVC Placement: Data-related Model components such as repositories/DAOs and the database.
Key Principle:
Each tier should interact only with its adjacent tier 
Presentation tier interacts with Application tier which in turn interacts with Data tier ensuring clean separation of concerns.
Question 8 – Explain BA contributions in project (Waterfall Model – all Stages).
Answer:
The Waterfall Model is a linear and sequential SDLC approach where each phase must be fully completed before the next begins. Business Analyst involvement is crucial throughout the lifecycle to ensure the solution meets business needs and stakeholder expectations.
	Stages
	Activities
	Artifacts & Resources

	Pre-Project
	• Understand business problem/opportunity
• Identify business goals, constraints
• Initial stakeholder discussions
• Support feasibility & impact analysis
	• Problem Statement
• Business Case / Feasibility Study
• Stakeholder List

	
	
	
	

	
	
	
	

	
	
	
	

	Planning
	• Requirement planning & estimation
• Identify stakeholders, RACI, communication plan
• Define elicitation approach & tools
• Support PM in scope definition
	• BA Plan
• Stakeholder Register
• Communication Plan
• Scope Statement
	

	
	
	
	

	
	
	
	

	
	
	
	

	Project Initiation
	• Participate in kick off meeting
• Clarify scope, objectives, success criteria
• Identify assumptions, risks, dependencies
• Gather high-level requirements
	• Project Charter
• High-Level Requirements Document
• Risk & Assumptions Register
	

	
	
	
	

	
	
	
	

	
	
	
	

	Requirements Analysis
	• Analyse, refine, and validate requirements
• Prioritize requirements (MoSCoW)
• Create UML models (Use Case, Activity, Sequence, Class)
• Identify gaps, conflicts, and dependencies
	• SRS / FRD
• UML Diagrams
• Requirements Traceability Matrix (RTM)
	

	
	
	
	

	
	
	
	

	
	
	
	

	Design
	• Support architects/designers for functional design
• Validate that design aligns with requirements
• Clarify requirements for development teams
	• Solution Design Document
• UI Wireframes / Mockups
• Updated RTM
	

	
	
	
	

	
	
	
	

	Development
	• Provide ongoing clarification to developers
• Review developed components for requirement alignment
• Participate in defect triage
	• Clarification Logs
• Prototype Review Notes
• Updated RTM
	

	
	
	
	

	
	
	
	

	Testing
	• Support QA in preparing test scenarios & cases
• Validate test coverage against requirements
• Analyse and prioritize defects
• Verify fixes
	• Test Scenarios / Test Cases
• Defect Log
• RTM Coverage Report
	

	
	
	
	

	
	
	
	

	
	
	
	

	UAT (User Acceptance Testing)
	• Prepare UAT plan & test data
• Conduct UAT walkthroughs/training
• Capture UAT issues & feedback
• Ensure business sign-off
	• UAT Test Cases
• UAT Issue Log
• UAT Sign-off Document
	

	
	
	
	

	
	
	
	

	
	
	
	



Question 9 – What is conflict management? Explain using Thomas – Kilmann technique.
Answer: 
Conflict Management:
It is the process of identifying, addressing, and resolving disagreements in a constructive manner. Effective conflict management helps minimize negative effects, improves relationships, and supports better decision-making and team performance.
The Thomas–Kilmann Conflict Mode Instrument is a widely used model that explains how people respond to conflict based on two dimensions:
· Assertiveness: Focus on satisfying one’s own needs
· Cooperativeness: Focus on satisfying the other party’s needs
Using these two dimensions, the model identifies five conflict-handling styles:
1. Collaboration (High Assertiveness, High Cooperativeness)

· A win-win approach where both parties work together to find a mutually beneficial solution.
· Best used when relationships and long-term solutions matter.
Example: BA, developer, and stakeholder collaborate to refine a complex requirement.

2. Competition (High Assertiveness, Low Cooperativeness)

· A win-lose style focused on pushing one’s own position.
· Useful when quick, decisive action is needed.
Example: Project manager enforces a critical decision to meet a deadline.

3. Accommodation (Low Assertiveness, High Cooperativeness)

· A lose-win approach where one party gives in to maintain harmony.
· Suitable when the issue is more important to the other person.
Example: BA accepts small UI adjustments requested by a stakeholder.

4. Avoidance (Low Assertiveness, Low Cooperativeness)

· Not engaging in the conflict; postponing or withdrawing.
· Helpful when the issue is trivial or when emotions need to cool down.
Example: BA delays the discussion until more details are available.

5. Compromise (Medium Assertiveness, Medium Cooperativeness)

· Both parties give up something to reach a middle-ground solution.
· Effective for quick, balanced resolutions.
Example: Two stakeholders disagree; BA helps them agree on a simplified version of the feature.
[image: ]
Question 10 – List down the reasons for project failure.
Answer:
Improper Requirement Gathering
When requirements are not captured accurately, clearly, or completely, it leads to misunderstandings and incorrect development. Missing business rules, assumptions, or constraints often result in rework and project failure.
Lack of Stakeholder Involvement
If key stakeholders do not participate in requirement discussions, reviews, or approvals, the delivered solution fails to meet business needs. Stakeholder feedback is essential to ensure the project remains aligned to business objectives.
Ineffective or Poor Communication
Miscommunication among stakeholders, team members, or departments leads to incorrect assumptions, delays, and missed expectations. Without a proper communication plan, critical information may not reach the right people at the right time.
Continuous Change in Requirements (Scope Creep)
When requirements keep changing frequently without a proper change control process, the scope keeps expanding. This causes delays, cost overruns, and misalignment with the original project goals.
Poor Risk Management
If risks are not identified early or mitigation actions are not planned, unexpected challenges occur during execution. Poor risk handling leads to delays, resource issues, and ultimately project failure.
Improper Planning
Without clear planning of scope, timelines, milestones, and resources, the team may struggle to execute tasks effectively. Poor planning results in delays, confusion, and inability to track project progress.
Unrealistic Expectations
When goals, deadlines, or scope are unrealistic or not feasible, the team cannot deliver successfully. This leads to dissatisfaction, rework, and project disruption.
Insufficient Resources
Lack of time, budget, skilled resources, or appropriate technology can impact project delivery. Resource limitations often lead to incomplete implementation or quality issues.
Lack of Executive Support
Without proper leadership support, projects struggle with decision-making, approvals, and funding, which can lead to delays or failure.
Quality Assurance & Testing Issues
Inadequate testing or incomplete test coverage causes defects to reach production, affecting system performance and user satisfaction.
Question 11 – List the Challenges faced in projects for BA.
Answer:
Unclear or Changing Requirements
One of the biggest challenges for a BA is dealing with incomplete, ambiguous, or frequently changing requirements. This leads to rework, misalignment, and difficulty in maintaining requirement stability throughout the project.
Managing Stakeholder Expectations
Stakeholders often have different priorities and expectations. Balancing these, resolving conflicts, and ensuring that all stakeholders have a common understanding of scope and outcomes is a major BA responsibility.
Scope Creep and Scope Management
When new requirements are added without proper change control, it leads to scope creep. Managing these changes, evaluating impacts, and ensuring alignment with project goals is challenging for the BA.
Time and Resource Constraints
BAs often work under tight deadlines with limited resources. Conducting elicitation, analysis, documentation, and validation within restricted timelines can create pressure and reduce requirement quality.
Quality Assurance and Testing Challenges
Ensuring that test cases cover all requirements, supporting QA teams, validating defects, and maintaining RTM coverage are tasks that require significant effort. Any gaps in requirement quality directly impact testing effectiveness.
Documentation and Knowledge Management
Maintaining updated documents, keeping RTM accurate, handling multiple versions, and ensuring proper knowledge transfer across teams can be difficult, especially in long-running or complex projects.
Technology Constraints and Complexity
BAs often face challenges related to system limitations, integration issues, or complex technical architectures. Understanding technological constraints and ensuring requirement feasibility adds to the complexity.
Question 12 – Write about Document Naming Standards.
Answer:
Document Naming Standards provide a consistent and systematic approach for naming project documents so they are easy to identify, manage, and retrieve. A proper naming convention usually includes the project identifier, document type, version number, and date. 
A standard format can be:
[ProjectID][DocumentType][Version]_[Date].extension
· ProjectID → Unique project code
· DocumentType → BRD, FRD, SRS, RTM, UAT, etc.
· Version → V1.0, V1.1, V2.0
· Date (optional) → YYYY-MM-DD format
· extension → .docx, .xlsx, .pdf, etc.
Example:
· PROJ123_FRD_V1.0_2024-05-26.docx
· PQ777_BRD_V1.1.docx
Question 13 – What are the Do’s and Don’ts of a Business Analyst.
Answer: 
	Do’s
	Don’ts

	Listen actively and completely to stakeholders before asking questions.
	Don’t make assumptions or use terms like “By default.”

	Ask clear, relevant, and probing questions to understand requirements deeply.
	Don’t interrupt stakeholders while they are explaining requirements.

	Document requirements clearly and get them validated.
	Don’t skip requirement validation or sign-offs.

	Maintain regular and transparent communication with all teams.
	Don’t use technical jargon with business users.

	Use diagrams and models (UML, workflows) to improve requirement clarity.
	Don’t imagine requirements in terms of GUI or jump to technical solutions.

	Manage scope changes using a proper change control process.
	Don’t allow uncontrolled scope creep.

	Consult SMEs and verify information from reliable sources.
	Don’t provide solutions before fully understanding the business problem.

	Stay objective, neutral, and focused on business value.
	Don’t work in isolation — always collaborate with stakeholders and teams.



Question 14 – Write the difference between packages and sub-systems.
Answer:
Packages
· Packages are logical groupings of related model elements such as classes, interfaces, or use cases.
· They help organize diagrams and improve readability by grouping related items.
· Packages can be nested inside other packages for better structure.
· They do not represent executable behavior; they mainly serve as an organizational unit within a model.
Subsystems
· A subsystem is a higher-level, modular unit that represents a functionally independent part of the system.
· It groups multiple elements (classes, components, packages) and provides a well-defined set of responsibilities.
· Subsystems can often operate semi-independently and expose interfaces to other subsystems.
· They are used when designing large systems that require modularity, reusability, and clear separation of functionalities.
Question 15 – What is camel-casing and explain where it will be used.
Answer:
Camel-casing is a naming convention where multiple words are written together without spaces and each new word begins with a capital letter. In lowerCamelCase, the first word starts with a lowercase letter (e.g., customerName). In UpperCamelCase (PascalCase), every word starts with a capital letter (e.g., CustomerDetails).
Camel-casing is mainly used in:
· Programming → naming variables, functions, methods
Example: calculateInterestRate(), orderId
· API naming & JSON fields → customerAddress, paymentStatus
· Class names (PascalCase) → CustomerDetails, PaymentService
· Use case or feature naming → ValidateCustomerDetails, GenerateInvoice
Question 16 – Illustrate Development server and what are the accesses does business analyst has?
Answer: 
A Development Server is an environment used by developers to build, code, unit test, and debug the application during the early stages of the software development lifecycle. It contains initial builds and work-in-progress code before it is moved to QA or UAT environments.
A BA typically has limited and controlled access:
1. Read-Only Access
· BA can view the application screens
· Navigate through workflows
· Validate basic functionality
· Check UI alignment with requirements

2. Ability to Perform Early Requirement Validation
· Compare developed features with BRD/FRD
· Identify mismatches or missing requirements
· Raise clarifications for developers

3. No Code or Deployment Access
· BA does not get:
· Write access
· Database modification rights
· Code changes
· Deployment privileges

4. Module-Level Access
· Some projects give business analysts access only to specific modules for review or demos.
Question 17 – What is Data Mapping?
Answer:
Data Mapping is the process of linking data fields from a source system to corresponding fields in a target system. It defines how data is transferred, transformed, and loaded from one environment to another. This ensures that the data remains accurate, consistent, and meaningful after integration or migration.
Data Integration:
Ensures that fields from different systems match correctly when combining data for reporting or analytics.
Data Migration:
When moving data from a legacy system to a new system, mapping ensures each source field is correctly mapped to the appropriate target field.
Data Transformation:
Converts or standardizes data values (e.g., date formats, codes, units) so the target system can interpret them.
Why Data Mapping Is Important
· Ensures data accuracy and correctness
· Prevents data loss during movement
· Maintains consistency across systems
· Helps validate and verify data during migration or integration
Question 18 – What is API. Explain how you would use API integration in the case of your application Date format is dd-mm-yyyy and it is accepting some data from Other Application from US whose Date Format is mm-dd-yyyy.
Answer:
An API - Application Programming Interface is like a messenger that allows two different software applications to talk to each other. It defines a set of rules for how they can request and share information securely, without revealing their internal system details.
Solving the Date Format Problem Using API Integration
Our application uses the date format dd-mm-yyyy, while the US application uses mm-dd-yyyy. This can create confusion for example, 05-07-2025 means 5th July for us, but 7th May for the US system.
To avoid errors, we can use API integration with a built-in date conversion mechanism.
Steps to Handle the Date Format Difference
1. Create a Connection
We connect both applications using an API so they can send and receive data in a structured and secure way using HTTPS and authentication.

2. Add a Translator in the Middle
Inside the API logic, we add a date translator whose job is to convert dates between the two formats.
To make this reliable, the translator can first convert the date to an international standard format like YYYY-MM-DD.

3. How the Translation Works
When receiving data from the US application:

· The translator reads the incoming mm-dd-yyyy date
· Converts it into ISO format (YYYY-MM-DD)
· Then converts it into our required format dd-mm-yyyy
· Stores it safely in our system
When sending data to the US application:
· Take our stored date in dd-mm-yyyy
· Convert it to ISO format (YYYY-MM-DD)
· Finally convert it into mm-dd-yyyy before sending it

4. Double-Check the Dates
The translator also validates dates:
· No invalid dates like 31-04-2023
· No wrong month/day combinations
· Ensures the converted date is still correct

oleObject3.bin
Customer

Net Banking System


Bank

Initiate Payment Request


Authenticate Customer Details


Validate Payment Details


Deduction of Amount


Process Payment to Recipient's Bank


Payment Confirmation


Recieve's Payment Confirmation



image4.png
High

Assertiveness

Low

Compete

Collaborate

Compromise

Avoid

Accommodate

Low

Cooperativeness.

High





image1.emf
Payment System

Customer

Database

Bank Server

Register Account

User ID Password

«uses» «uses»

Login to System

Make Payment

Cash

Card

Net Banking

«extends»

«extends»

«extends»

Select Net Banking

Option

Select Bank

Enter Bank

Credentials

Validate

Credentials

Enter Payment

Amount

Submit Payment

Send Payment Email

Confirmation

Logout

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*


oleObject1.bin
System


Payment System


Customer


Use Case


Database


Bank Server


Register Account


User ID


Password


«uses»


«uses»


Login to System


Make Payment


Cash


Card


Net Banking


«extends»


«extends»


«extends»


Select Net Banking
Option


Select Bank


Enter Bank
Credentials


Validate
Credentials


Enter Payment
Amount


Submit Payment


Send Payment Email
Confirmation


Logout


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*


*



image2.emf
Customer

PK Customer_ID

Customer Name

Contact Details

Address

Account Details

Bank

Bank Name

Location

Branch Code

Payment

Payment Id

Amount

Payment Date

Status

Account

Account No.

Account Type

Account Holder Name

Balance

Net Banking Service

Authentication

Fund transfer

Transaction History

Account Management

Authentication

Username

Password

OTP

Transaction

Transaction ID

Receipient Details

Amount

TimeStamp


oleObject2.bin
text�

�

Table



image3.emf
Customer Net Banking System Bank

Initiate Payment Request

Authenticate Customer Details

Payment Confirmation

Recieve's Payment Confirmation

Validate Payment Details

Deduction of Amount

Process Payment to Recipient's Bank


