CAPSTONE PROJECT 3 - PART 1


1. A customer can make a payment either by card or by Wallet or by Cash or by Net 
    Banking. Draw a use case diagram?

     The diagram represents a Payment Application where a user (customer) can log in and 
      Make a payment.
      After logging in, the customer can choose one of the payment methods:
      Cash, Card, Wallet, Net banking.
       If the customer selects Net Banking, the system allows the user to:
       Select the bank.
       Enter the bank details.
       Enter the amount.
       Click on pay.
       After the payment is completed, the system sends a payment confirmation in the form:
       Email / SMS.
       Finally, the user can logout.
       The Bank Server is shown as an external actor because the application communicates
        With it during the Net banking transactions.


     
























2. Derive Boundary Classes, Controller Classes, Entity Classes?
    
     BOUNDARY CLASSES:
      Boundary classes represent the interaction between the system and the external actors
       (customer, UI screens).
	BOUNDARY CLASS
	DESCRIPTION

	Payment screen/payment UI
	Screen where customer selects payment type (card/wallet/cash/net banking).

	Card payment form
	UI form to enter card number, CVV, expiration date.

	Wallet payment form
	UI to login in or access wallet balance.

	Net banking login screen
	UI screen redirecting to bank portal for authentication.

	Cash payment receipt screen
	UI showing instructions or confirmation for cash payment.



CONTROLLER CLASSES:
Controller classes manage the flow of data between boundary and entity classes.
	CONTROLLER CLASS
	DESCRIPTION

	Payment controller
	Main controller that receives payment selection and routes to the respective method.

	Card payment controller
	Handles card validation and processing.

	Wallet payment controller
	Checks wallet balance and handles wallet payment logic.

	Net banking controller
	Connects to external net banking gateway.

	Cash payment controller
	Records cash payment and generate receipt.



ENTITY CLASSES:
Entity classes represent core business data stored in the system.
	ENTITY CLASS
	ATTRIBUTES (EXAMPLE)
	DESCRIPTION

	Payment
	Payment ID, Payment Amount, Payment date, payment status, payment mode.
	Stores payment details.

	Customer
	Customer ID, name, email, mobile number.
	Customer information.

	Card
	Card no, card type, expiry date.
	Stores card details for processing.

	Wallet
	Wallet ID, wallet balance, provider name.
	Represents digital wallet data.

	Bank account
	Account no, IFSC, bank name.
	Used for net banking payment.



3. Place these classes on a three-tier architecture?
     Three- tier architecture contains:
       1. Presentation Layer (UI / Boundary Classes)
       2. Business Logic Layer (Controller Classes)
       3. Data layer (Entity Classes / Database)
        Placement of Classes:
        
	LAYER
	CLASSES
	WHY THEY ARE HERE

	Presentation Layer
(Boundary Classes)
	Payment screen, card payment form, wallet payment form, net banking screen, cash payment screen.
	These screens interact directly with the customer.

	Business Logic Layer
(Controller Classes)
	Payment controller, card payment controller, wallet payment controller, net banking controller, cash payment controller.
	These classes contain the payment logic and decide which payment method to trigger.

	Data Layer
(Entity Classes)
	Customer, payment, card, wallet, bank account.
	These classes store core data in the database.



4. Explain Domain Model for customer making payment through net banking?

    A domain model shows the important entities (objects) involved in the process and how 
     They are related to each other.
     For Net Banking payment, the main entities are customer, Payment, Bank account, and
     Bank.
     Customer initiates a payment - payment is processed - bank account verifies - bank 
      Confirms the transaction.
      Entities Involved:
       
	Entity
	Attributes (examples)

	Customer
	Customer id, name, email, mobile no.

	Payment
	Payment id, amount, payment mode, payment status, date.

	Bank Account
	Account no, account holder name, IFSC, login credentials.

	Bank
	Bank id, bank name, gateway URL.



Relationships:
A customer makes a payment.
A payment is processed using a bank account.
A bank account belongs to a bank.

5. Draw a Sequence Diagram for payment done by customer Net Banking?























6. Explain Conceptual Model for this case?
    
      A conceptual Model is a high-level representation of the system.
      It shows what objects (entities) exist in the system and how they are related,
      Without showing technical details.
       For this case - customer making payment through Net Banking.
       ENTITIES (What are the key objects?)
       Customer
       Payment
       Bank Account
       Bank
       ATTRIBUTES (important information stored about each entity)
        
	ENTITY
	ATTRIBUTES

	Customer
	Customer id, name, email, phone number

	Payment
	Payment id, amount, payment status, payment mode (net banking), date.

	Bank account
	Account no, account holder name, IFSC, login userid.

	Bank
	Bank id, bank name.



RELATIONSHIPS BETWEEN ENTITIES:
A customer makes a payment.
A payment is done using a bank account.
A bank account belongs to a bank.

7. What is MVC architecture? Explain MVC rules to derive classes from use case 
     Diagram and guidelines to place classes in 3-tier architecture?
     
      MVC ARCHITECTURE:
       MVC stands for Model - View - Controller an architectural pattern that divides an 
        Application into three components.
	COMPONENTS
	MEANING
	RESPONSIBILITIES

	MODEL
	Represents data/ business logic.
	Manages application data, rules, validation, and interaction with database.

	VIEW
	Represents UI / screens
	Displays data to users and takes input (screens, forms, pages).

	CONTROLLER
	Acts as an intermediary
	Receives input from view, calls model, returns output to view.



WHY MVC IS USED?
Avoids mixing UI, logic, and database code.
Increases maintainability and scalability.
MVC RULES TO DERIVE CLASSES FROM USE CASE DIAGRAM.
	CLASS TYPE
	HOW TO IDENTIFY

	Boundary / view class
	Every interaction between actor - system becomes a view class (screen/form).

	Controller class
	Every use case becomes a controller class.

	Entity / model class
	Every business noun from use case (customer, payment, order, etc.,.) becomes a model / entity class.



EXAMPLE:
Actor = customer - view classes (payment screen, login screen)
Use Case = make payment - controller class (payment controller)
Data nouns = customer, payment, bank account - model/ entity classes
GUIDELINES TO PLACE MVC CLASSES INTO 3-TIER ARCHITECTURE
	3-TIER
	WHAT IT CONTAINS
	CORRESPONDING MVC

	Presentation tier
	UI screens, forms, pages
	View classes

	Business logic tier
	Processing, validations, workflows.
	Controller classes

	Data tier
	Database entities / tables.
	Model classes / entity classes



MVC separates an application into model (data), view (UI), and controller (logic). From the use case diagrams, UI interactions become view classes, each use case becomes a controller class, and business objects become model / entity classes. In 3-tier architecture: view goes to presentation layer, controller goes to business layer and model goes to data layer.
8. Explain BA contributions in project (waterfall model - all stages)?
    
	STAGE
	BA ACTIVITIES
	ARTIFACTS/ OUPUTS/ RESOURCES

	Pre-project / proposal
	Understand the business problem, identify stakeholders, conduct initial business case discussion.
	Business case, problem statement, initial scope document.

	Planning
	Define scope, identify risks, prepare requirement plan, estimate BA effort.
	Scope statement, BA plan, stakeholder register, RACI.

	Project initiation
	Conduct kickoff meeting, define communication plan, finalize requirement approach.
	Project charter, communication plan, stakeholder matrix.

	Gathering requirements
	Conduct interviews, workshops, JAD, sessions, collect functional and non-functional requirements.
	BRD notes, requirement elicitation document, MoM.

	Requirement analysis
	Analyze requirements, create models (use case, process flow, user stories), prioritize requirements.
	SRS / BRD, use case diagram, data flow diagram, domain model.

	Design support
	Validate UI/UX wireframes, ensure requirements are correctly interpreted by designers and architects.
	Wireframes, mockups, UI specifications.

	Development support
	Clarify doubts of developers, participate in requirement walkthrough, update change requests.
	Updated BRD / SRS, CR log, clarification tracker.

	Testing support
	Support QA team, review test cases, validate test coverage, assist in defect triage.
	RTM (requirement traceability matrix), test case review, defect log.

	UAT 
	Support business users during testing, validate final product against requirements.
	UAT test scenarios, sign off doc, release note.



9. What is conflict management? Explain using Thomas-Kilmann technique?
    
     CONFLICT MANAGEMENT:
Conflict management is the process of resolving disagreements between individual or groups in a constructive way. The goal is to reduce friction and ensure smooth communication within the team.
THOMAS-KILMANN CONFLICT MANAGEMENT TECHNIQUE:
Thomas - Kilmann model is a widely used tool to assess how individuals handle conflict. It helps select the right conflict-handling style, depending on the situation.
	THOMAS-KILMANN STYLE
	MEANING/WHEN USED

	Competing (forcing)
	High assertiveness, low cooperation - used when a quick, decisive action is needed.

	Collaborating (win-win)
	High assertiveness & high cooperation - used to find the best solution satisfying all parties.

	Compromising (give & take)
	Moderate assertiveness & cooperation - used when both parties give up something to reach a middle ground.

	Avoiding (ignoring)
	Low assertiveness & low cooperation - used when the issue is minor or emotions are high.

	Accommodating (let them win)
	Low assertiveness & high cooperation - used to maintain harmony or when the other party’s need is more critical.



STEPS IN CONFLICT MANAGEMENT (BASED ON YOUR SIDE):
Identify the conflict.
Discuss the details openly.
Agree on the root cause.
Evaluate possible solutions.
Negotiate and choose the best solution.
EXAMPLE:
If two team members disagree on a requirement, the BA listens to both sides (collaborative style), identifies root cause, proposes solution, and gets agreement.

10. List down the reasons for Project Failure?
       
       Projects fail due to several management, communication, and technical issues.
       Key reasons include:
1. POOR PLANNING:
     No clear roadmap or milestones, leading to delays and confusion.
2. UNCLEAR OBJECTIVES AND REQUIREMENTS:
     Requirements are not defined properly or keep changing frequently.
3. INADEQUATE RISK MANAGEMENT:
    Risks are not identified or mitigated early, causing unexpected issues later.
4. POOR COMMUNICATION:
     Miscommunication between stakeholders, BA, development, and testing teams results in 
     Misunderstandings.
5. SCOPE CREEP:
     New features are added without evaluation, causing timeline and budget impact.
6. LACK OF STAKEHOLDER ENGAGEMENT:
     Stakeholders are not available to provide feedback, causing delays and rework.
7. RESOURCE CONSTRAINTS:
    Lack of skilled people, tools, time, or budget affects project progress.
8. TECHNICAL CHALLENGES:
     Technology limitations, integration failures, or poor architecture lead to system issues.


11. List the challenges faced in projects by BA?
       
      A Business Analyst faces several challenges while working on projects, including:
   1.  UNCLEAR OR CHANGING REQUIREMENTS:
         Requirements are not clearly defined, or stakeholders keep changing them frequently
         Causing rework.
  2.  MANAGING STAKEHOLDER EXPECTATIONS:
        Different stakeholders have different expectations, and the BA must align everyone
         To a common goal.
 3.  SCOPE CREEP AND SCOPE MANAGEMENT:
     New features are added during the project without proper evaluation of timeline
      And cost.
4.  TIME AND RESOURCE CONSTRAINTS:
      Limited time, tight deadlines, or insufficient resources make requirement activities
       Difficult.
5.  QUALITY ASSURANCE AND TESTING SUPPORT:
      Ensuring that test cases correctly cover all requirements and resolving gaps during
       Testing.
6.  DOCUMENTATION AND KNOWLEDGE MANAGEMENT:
      Maintaining proper requirement documents, updates, and communication records
       Throughout the project.
7.  TECHNOLOGY CONSTRAINTS AND COMPLEXITY:
      Understanding technical feasibility and limitations when working with new or 
       Complex technology.
BA must continuously communicate, clarify requirements, handle changes, and ensure
That the project delivers what the business needs.

12.  Write about Document Naming Standards?

      A Document Naming Standard is a systematic approach used in projects to assign
        Unique and meaningful names to documents.
         It helps everyone in the project identify:
         What the document is about?
          Which project it belongs to?
          The version of the document?
           When it was created or updated?
         COMPONENTS OF A NAMING STANDARD:
         1. project id / code
         2. document type
      3. version number
      4. date (created / updated)
EXAMPLE:
PROJECT ID = PROJ123
DOCUMENT TYPE = REQ (REQUIREMENTS DOCUMENT)
VERSION = 1.0
DATE = 2025-05-26
Then the document name becomes:
PROJ123-REQ-1.0-2025-05-26

BENEFITS OF DOCUMENT NAMING STANDARDS:
Easier document tracking and retrieval.
Avoids confusion between different versions.
Provides clear structure and consistency.
Document naming standards provide a systematic way to assign unique identifiers to documents so they can be easily recognized, tracked, and maintained throughout the project lifecycle.

13.  What are the DO’s and Don’ts of a Business Analyst?

 What a BA should always do
1.  Consult an SME for clarifications:
 If requirements are unclear, ask a subject matter expert.
2.  Go to the client with an open mind (no assumptions)
Listen without jumping to conclusions.
3.  Listen completely before asking questions:
Understand the entire requirement before giving input.
4.  Extract maximum leads from the client themselves:
Encourage the client to explain the problem deeply.
5.  Concentrate on important requirements:
Prioritize what gives business value.
6.  Question everything (existence, purpose, clarity)
Validate whether each requirement is necessary.

What a BA should avoid:
1.  Never say NO to the client directly:
Suggest alternatives instead of rejecting ideas.
2. Don’t use phrases like “by default”
Everything should be clarified and documented.
3.  Never imagine anything in terms of GUI/UI:
Understand business rules first, design comes later.
4.  Don’t interrupt the client when they are explaining:
Let them finish so you get full information.
5.  Don’t try to give solutions immediately:
Understand the problem completely first.
6.  Don’t rely only on past experience or assumptions:
Each project and client requirement is different.

14. Write the difference between packages and sub-systems?

PACKAGES:
A package is a collection of components (modules/classes/screens) grouped together for 
A specific purpose.
The components inside a package are generally not reusable outside that package.
EXAMPLE:
Application development companies work on packages.
E.g., Modules like Login, Dashboard, Payment, etc., grouped as one package for a project.
SUB-SYSTEMS:
A sub-system is a collection of components that are reusable in nature.
Sub-system is built in a generic way so they can be reused across different applications or products.
EXAMPLE:   
Product development companies work on sub-system.
e.g., A reusable payment gateway system that can be integrated into multiple projects/products.

15.  What is camel-casing and explain where it will be used?

CAMEL-CASING:
Camel-casing is a naming convention used in computer programming where multiple words
Are written together without spaces, and each new word starts with a capital letter - like the humps of a camel.
WHY IS CAMEL-CASING USED?
To name variables, functions, classes, and identifiers in a readable way.
Makes multi-word names easier to understand and maintain.
TYPES OF CAMEL-CASING:
	TYPE
	EXAMPLE
	FORMAT

	Upper camel case / Pascal case
	Camel Case Example
	Every word starts with uppercase.

	Lower camel case
	camel Case Example 
	First word starts lowercase, rest uppercase.




16.  Illustrate development server and what are the accesses does Business Analyst 
       Has?
DEVELOPMENT SERVER:
A Development Server is a dedicated environment used during the software development process.
It allows developers and testers to build, test, and debug applications before they are moved to higher environments (like QA, UAT, or production).
PURPOSE OF A DEVELOPMENT SERVER:
Acts as a platform to develop code.
Used to perform initial testing and troubleshooting.
Helps identify issues early before the software is deployed to users.
WHAT ACCESS DOES A BUSINESS ANALYST HAVE?
As a Business Analyst, access is limited.
BA can:
View the application prototype or build.
Validate basic workflow or behavior.
BA cannot:
Modify code.
Deploy applications.
Perform technical configuration.
A development server is mainly used by developers and testers for building and testing applications, while the BA has limited access only for requirement validation.

17.  What is Data Mapping?

DATA MAPPING:
Data Mapping is the process of connecting data from one source to another.
It defines how data fields in one system correspond to data fields in another system or database.
WHY IS DATA MAPPING USED?
Ensure that data remains consistent, accurate, and meaningful when transferred or integrated between systems.
Acts like a guide or map showing how each piece of data in the source matches to the destination.
EXAMPLE:
If you move customer data from application A to database B:
	SOURCE (APPLICATION A)
	DESTINATION (DATABASE B)

	Cust name
	Customer_name

	Mobile no
	Phone_number

	Address line 1
	Address



Data mapping ensures that the correct fields are transferred to the right place.

18.  What is API. Explain how you would use API integration in the case of your 
       Application date from is dd-mm-yyyy and it is accepting some data from other
       Application from US whose date format is mm-dd-yyyy?

APPLICATION PROGRAMMING INTERFACE:
API is a set of rules and methods that allows two software applications to communicate with each other.
It defines how a request should be sent, what data must be provided, and what format the response will come back in.
WHY IS AN API NEEDED?
Different systems are built using different technologies.
An API allows them to talk to each other without knowing each other’s internal logic.
EXAMPLE:
When you make an online payment, the shopping app uses a bank API to verify the transaction.
HOW API WORKS:
One application sends a request to another system through an API.
The API processes the request.
It returns a response back to the application.
It is just like a waiter in a restaurant:
You ask the waiter (API) what you want (request).
The waiter goes to the kitchen (server).
Brings back your order (response).
KEY FEATURES OF AN API:
	FEATURE
	DESCRIPTION

	Communication
	Allows applications to exchange data.

	Standard format
	Uses JSON or XML to send and receive data.

	Secure
	Uses authentication like API keys / tokens.

	Reusable
	Once created, it can be used by multiple applications.



TYPES OF APIs:
1. REST API - most common, uses HTTP methods (GET, POST, PUT, DELETE).
2. SOAP API - uses XML, more secure and formal.
3. INTERNAL APIs - used within company systems.
EXAMPLE:
A mobile app wants to fetch customer details:
Request (GET):
https://api.bank.com/customer/123
Response (JSON):
{
“Customer id”: “123”,
“name”: “john”,
“balance”: 25000
}
ROLE OF BUSINESS ANALYST WITH APIs:
A BA is involved in:
Understanding which systems need to integrate.
Creating data mapping (source field to destination field).
Reviewing API documentation.
Helping with testing and validating API responses.

An API acts as a bridge between two applications, enabling them to communicate and exchange data securely and efficiently.

     
       


image1.emf
Payment Application

User

Database

Bank server

login

username password

payment

cash

card

wallet

net banking

select net banking

select bank

add bank details

add amount to pay

click on pay

payment

confirmation

sms email

logout

-End1

*

-End2

*

-End3

*

-End4

*

-End5

*

-End6

*

-End7

*

-End8 *

-End9 *

-End10

*

-End11

*

-End12

*

-End13

*

-End14

*

-End15

*

-End16

*

-End17

*

-End18

*

-End19

*

-End20

*

-End21

*

-End22

*


oleObject1.bin
System


Payment Application


User


Use Case


Database


Bank server


login


username


password


payment


cash


card


wallet


net banking


select net banking


select bank


add bank details


add amount to pay


click on pay


payment
confirmation


sms


email


logout


-End1


*


-End2


*


-End3


*


-End4


*


-End5


*


-End6


*


-End7


*


-End8


*


-End9


*


-End10


*


-End11


*


-End12


*


-End13


*


-End14


*


-End15


*


-End16


*


-End17


*


-End18


*


-End19


*


-End20


*


-End21


*


-End22


*



image2.emf
customer merchant

Payment

gateway

bank

select product & proceed to payment

show payment options

select net banking

login & authorize payment

payment confirmation

show order confirmation

redirect to bank login page

send payment status (success/failure)

send payment request

PAYMENT APPLICATION


oleObject2.bin
Sequence


customer


merchant


Payment
gateway


bank


login & authorize payment


payment confirmation


select product & proceed to payment


show payment options


select net banking


show order confirmation


redirect to bank login page


send payment status (success/failure)


send payment request


PAYMENT APPLICATION



